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Abstract— Decentralized adaptive control is based
on the use of many local controllers in parallel, each
of them estimating its own local model and pursuing
local aims. When each controller designs its strategy
using only its model, the resulting control will be
suboptimal since local models do not allow predic-
tion of consequences of actions of the neighbors. We
use probabilistic formulation of adaptive control to
build predictive densities of future outputs. Mutual
exchange of these densities on commonly observed
variables is proposed to compensate for incomplete-
ness of the local models. The task is to find a proce-
dure how to use such information withing the control
strategy design under the constraint that the resulting
design procedure is of the same complexity as the
one without the exchange. We present an approximate
algorithm and illustrate its performance on a simple
example.

I. Introduction

Decentralized adaptive control is a well developed field
for deterministic systems [1], or systems with stochastic
inputs [7]. In this work, we are concerned with general
stochastic systems that are described by probability
density functions. The main task addressed in this paper
is what functional forms of uncertain information can
be exchanged between the controllers and how such
information can be used in design of stochastic control
strategy.

A. Centralized adaptive control

Consider probabilistic model of a stochastic system:

yt ∼ f(yt|ut, dt−∂:t−1, θt). (1)

Here, vector yt denotes vector of outputs of the sys-
tem, ut is the vector of inputs, dt is their aggregation
dt = [y′t, u

′
t]
′, dt−∂:t−1 = [dt−∂ , . . . , dt−1], and θt is an

unknown time-variant parameter. The model can be es-
timated using Bayes’ rule with forgetting [4], recursively
evaluating posterior density on parameters f(θt|d1:t).
One-step predictor of yt is obtained by marginalization:

f(yt+1|ut+1, d
1:t) =∫

f(yt+1|ut+1, d
1:t, θt+1)f(θt+1|d1:t)dθt+1. (2)

Control strategy for system (1) can be designed using
Fully Probabilistic Design (FPD) [2]. FPD minimizes

Both authors are with Institute of Information Theory and
Automation, Prague, Czech Republic. Support of grants AV ČR
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future expected loss in the form of Kullback-Leibler
divergence between the predicted and the target pdf
of future trajectory. As a result it generates stochastic
control law:

f(ut+1|d1:t) = arg min
f(u(h))

E
[
D
(
f(d(h)|d1:t)

∣∣∣∣∣∣g(d(h))
) ∣∣∣d1:t

]
.

(3)
Here, d(h) = dt+1:t+h denotes data on the predicted
horizon h, E [·| ·] denotes conditional expected value,
D (·||·) is the Kullback-Leibler divergence. f(d(h)|d1:t) is
predictive pdf of future outputs, and g(d(h)) is the target
pdf of the future outputs. This non-standard technique of
control strategy design reduces to linear quadratic (LQ)
control for linear Gaussian model (1) and specific choice
of Gaussian target pdf [2].

Rigorous evaluation the required multistep predictor

f(d(h)|d1:t) =
h∏
τ=1

f(dt+τ |d1:t+τ−1), (4)

is typically intractable and it is often approximated
by a product of one-step ahead predictors (2), using
f(dt+τ |d1:t+τ ) ≈ f(dt|d1:t). Under this approximation,
all steps of the associated design procedure are of the
same complexity, allowing evaluation for large h.

B. Extension to decentralized stochastic control
In decentralized control, each controller is assigned to

control only a sub-set of all considered inputs using only
local models. For simplicity, we will consider only two
controllers, C1 and C2. Data space of the ith controller,
d[i],t, is divided into its ‘private’ variables die,t and
commonly available variables d∩,t. The full data set is
then dt = [d1et, d∩t, d2et]. Input spaces of both controllers
are non-overlapping, ut = [u1,t, u2,t].

Naive decentralized control can be achieved by run-
ning two adaptive controllers in parallel, each of them
using local model and minimizing local loss function.
Such approach can yield mutually adverse individual
control strategies. This can be due to: (i) inconsistent loss
functions, and/or (ii) inconsistent predictions of future
behavior due to uncertainty in parameter estimates and
model incompleteness. We will assume that the target
densities are compatible and (i) does not arise. We
propose a mechanism how to reduce inconsistency in (ii).

II. Merging of multistep predictors

The constrained data-spaces allows each controller to
work with reduced models only and thus to produce only



marginal predictors of the future trajectory, fi(d[i]) ≡
fi(d

(h)
[i] |d

1:t
[i] ). The task is to find the best local control

strategies using only this information. We propose the
following approach: (i) construct a hypothetical global
controller, (ii) design the best possible conditionally
independent control strategy, and (iii) replicate design
of such control strategy on local level. Construction of
(i) requires to combine mutually incompatible posterior
pdfs from the local controllers. For this task, we use
the merging procedure [3] where global predictor is con-
structed as a probabilistic mixture. Key advantage of this
approach is that the merged predictor for each controller
requires only marginal density on the predicted data of
its neighbors:

f̃(d∩, die) = fi(die|d∩) (αf1(d∩) + (1− α)f2(d∩)) , (5)

where 0 ≤ α ≤ 1 is the chosen importance weight of
the first controller. Major disadvantage is that (5) is
a complex function of control strategies and predictors
preventing direct design of the control strategy. The
problem was considered in [5] and the following approx-
imate algorithm was developed. For all i in time t do:
/0/ Collect realizations d[i],t of d[i],t, build predictors (2).
/1/ Design control strategies fi(u1et+1|d1:t) using (3).
/2/ Using predictors (2) and data dt−∂:t, construct

fi(d
(h)
[i] |d

1:t
[i] ) =

∏h
τ=1

[
f(y[i]t+τ |ui,t+τ , d1:t+τ

[i] )

× fi(ui,t+τ |d1:t+τ
[i] )

]
δ(dt−∂:t

[i] − dt−∂:t
[i] ). (6)

Here, δ() denotes Dirac delta function.
/3/ Split (6) into marginal fi(d

(h)
∩ ) and conditional

fi(d
(h)
ie |d

(h)
∩ ). Send the marginal to all neighbors.

/4/ Build merged predictor (5). Project it into a Gaus-
sian pdf using geometric combination. Decompose it into
a product of one-step predictors (4).
/5/ Design a new control strategy fi(u1et+1|d1:t) using
FPD with one-step predictors from step /4/.
/6/ If required, go to /2/, else t← t+ 1.

III. Experiment

The following 3-output 2-input system was simulated:

f(yt|ψt,Σ) = N (θψ,Σ), (7)

where yt = [y1,t, y2,t, y3,t]′,
ψt = [y1,t−1, y2,t−1, y3,t−1, u1,t, u1,t−1, u2,t, u2,t−1]′,

θ =

 0.8 0.2 0 −0.3 0.4 0 0
−0.2 0.5 −0.8 0.2 0.5 −0.2 −0.5

0 1.1 −0.5 0 0 −0.2 0.3


and Σ = diag([0.1, 0.1, 0.1]). The system was con-
trolled to reach g(yt) = N ([0, 1, 0]′,diag([0.1, 0.1, 0.1])).
Target pdf for input was chosen as g(ut) =
N ([0, 0]′,diag([0.1, 0.1])). This choice correspond to the
quadratic criteria with inverses of variances as kernel
matrices. A Monte Carlo simulation of (7) controlled by
adaptive strategies designed on horizons h = [1, 4, 7] was
simulated for 200 steps for the following methods: CAC,

h=1
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Fig. 1. Relative performance of the the proposed DACwM method
after one iteration (full) and 10 iterations (dash-dotted) with
respect to CAC (dotted line) and DAC (dashed line). Different
columns correspond to strategies designed on indicated horizons
h.

centralized adaptive control using model (7); DAC,
naive adaptive control for C1 with d[1],t = [y1,t, y2,t, u1,.t],
C2 with d[2],t = [y2,t, y3,t, u[2],t], and accordingly adapted
ψ[i],t; DACwM, the proposed method for the same
decentralization as in DAC. Results of the relative im-
provement in performance of the proposed algorithm over
the naive approach are displayed in Fig 1 as function α
and h. After one iteration of the algorithm the resulting
control can be worse than that of the naive approach,
however, with increasing number of iterations, the pro-
posed method outperforms the naive approach [5].

IV. Discussion and Conclusion

Preliminary results indicate that merging of multi-
step predictors can improve performance of decentral-
ized adaptive controllers. On such a simple example,
the computational overhead associated with merging is
significantly higher that computational overhead of cen-
tralized control. However, this overhead will be smaller
on larger systems with minor overlap, such as distributed
adaptive control of urban surface traffic using traffic
lights [6]. Moreover, the proposed merging operation is
easily scalable to multiple neighboring controllers which
again is important in such a large systems as city traffic
network.
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